Solution Properties of [NN'-Bis(salicylidene)-S-(+)butane-1,3-diamino]oxovanadium(IV)

By RICHARD L. FARMER and F. L. URBACH*

(Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106)

Summary The results of i.r. electronic, c.d., and e.s.r. solution spectra indicate that $[NN'-bis(salicylidene)-S-(+)-butane-1,3-diamino]oxovanadium(IV), <math>[VO(sal)_2-(+)$ tnMe], is five-co-ordinate in chloroform, but becomes six-co-ordinate in solvents such as pyridine, dimethyl-formamide, and methanol.

OXOVANADIUM(IV) complexes with tetradentate Schiff base ligands generally exhibit little tendency to form six-coordinate adducts with additional donors.¹ A notable exception to this behaviour is found in the recently reported crystal structure of the orange compound, [NN'-bis(salicylidene)-propane-1,3-diamino]oxovanadium(IV), VO(sal)₂tn,² in which the individual molecules are joined by aninfinite chain of V-O-V bonds. We report here the properties of the related complex, VO(sal)₂(+)tnMe, in non-donorand donor solvents.

The i.r. mull spectra of both $VO(sal)_2tn^2$ and $VO(sal)_2(+)tnMe$ have an unusually low VO stretching frequency of ca. 855 cm⁻¹, indicating that $VO(sal)_2(+)tnMe$ also contains bridging vanadyl groups in the solid state. $VO(sal)_2(+)$ -tnMe exhibits the following VO stretching frequencies in

different solvents: chloroform, 991 cm-1; pyridine or dimethylformamide, ca. 960 cm⁻¹. These results indicate that v_{vo} is relatively unperturbed in a non-donor solvent but is lowered significantly upon axial co-ordination of a donor solvent molecule. Similar shifts in v_{vo} have been observed for VO(acac)23 and were attributed to solvent interaction.

The electronic spectrum of $VO(sal)_{2}(+)tnMe$ in chloroform is similar to that of previously reported five-coordinate salicylaldimine-oxovanadium(IV) complexes which show no solvent dependency and are presumably squarepyramidal.^{1,4} The d-d spectral region of VO(sal)₂(+)tnMe in chloroform consists of a single peak at 17,540 cm⁻¹ (ϵ 67), with shoulders at 13,900 cm⁻¹ (ϵ 27) and 21,400 cm⁻¹ (ϵ 95). In co-ordinating solvents, the d-d region exhibits two well defined maxima at ca. 13,300 cm⁻¹ (ϵ ca. 30) and ca. 19,000 cm⁻¹ (ϵ 80), with an additional shoulder at ca. 21,800 cm⁻¹ (ϵ 90). The electronic mull spectrum of VO- $(sal)_{2}(+)$ tnMe shows a peak at 11,800 cm⁻¹ and a shoulder at 20,000 cm⁻¹. These shifts, similar to the changes observed in the electronic spectra of VO(acac)₂ upon axial co-ordination,⁵ suggest, that $VO(sal)_2(+)tnMe$ is fiveco-ordinate in chloroform and six-co-ordinate in pyridine, dimethylformamide, and methanol.

Improved band resolution occurs in the c.d. spectra (cf. Table) of $VO(sal)_2(+)tnMe$ compared to the electronic spectra, and three bands are observed in the d-d region in both chloroform and pyridine. Unlike five-co-ordinate optically active salicylaldimine-oxovanadium(IV) complexes, whose $\Delta \epsilon$ values remain fairly constant in going from chloroform to donor solvents,⁴ the $\Delta \epsilon$ values of VO-(sal)₂(+)tnMe are significantly less in donor solvents compared to chloroform. These changes can be interpreted in terms of a more planar arrangement of the tetradentate

- ¹ L. J. Boucher and Teh Fu Yen, *Inorg. Chem.*, 1969, 8, 689. ² M. Mathew, A. J. Carty, and G. J. Palenik, *J. Amer. Chem. Soc.*, 1970, 92, 3197.
- ³ J. Selbin, H. R. Manning, and G. Cessac, J. Inorg. Nuclear Chem., 1963, 25, 1253.
- ⁴ R. L. Farmer and F. L. Urbach, Inorg. Chem., in the press.
- ⁵ J. Selbin, Chem. Rev., 1965, 65, 153.

ligand upon co-ordination of a solvent molecule in position 6.

Finally, an attempt was made to correlate shifts in the A_0 values obtained from e.s.r. spectra to axial co-ordination in donor solvents. Slight shifts were observed, but were not large enough $(A_0 = 98.36$ in chloroform compared to $A_0 = 93.76$ in methanol) to be assigned entirely to coordination effects. The g_0 values also remained constant within the solvent series; ranging from 1.974 in methanol to 1.976 in dimethylformamide. Both the A_0 and g_0 values are in good agreement with those published for other salicylaldimine-oxovanadium(IV) complexes.¹

Circular dichroism spectra of $VO(sal)_2(+)tnMe$

Solvent	v, cm ⁻¹ ($\Delta \epsilon$)
CHCI3	$\begin{array}{llllllllllllllllllllllllllllllllllll$
C ₅ H ₅ N	13,300°($-0.10)$ (I); 17,700($-0.236)$ (II); 20,830 ($-0.393)$ (III); 25,320 ($-4.1)$
MeOH	13,300 ^a (-0.15) (I); 18,870 (-0.276) (II); 21,280sh (-0.19) (III); 27,030 (-2.3)
HCONMe2	13,300 ^a (-0.18) (I); 18,180 (-0.561) (II); 20,830sh (-0.38) (III); 25,640 (-3.54)

^a Band lies too close to long wavelength limit of instrument to be fully resolved.

^b Refers to the numbering of the low energy bands.

We thank Dr. Thomas G. Campbell for a sample of S-(+)-1,3-diaminobutane, and Mr. Joel Levy for assistance in obtaining e.s.r. data. This research was supported by a grant from the Petroleum Research Fund administered by the American Chemical Society.

(Received, September 7th, 1970; Com. 1514.)